LLM Useful Functions Collection
Recommended posts: 【Python】 Python Useful Functions Collection, 【Algorithms】 Lecture 21. NLP and LLM
3. LLM agents
4. AI Scientist
1. NLP useful functions
⑴ A function that automatically translates a given sentence into English
! pip install --upgrade googletrans httpx httpcore deep_translator
def to_english (sentence):
from deep_translator import GoogleTranslator
translated = GoogleTranslator(source='auto', target='en').translate(sentence)
return translated
print( to_english("나는 소년입니다.") )
# I am a boy.
print( to_english("단핵구") )
# monocytes
⑵ A function that automatically translates a given sentence into Korean
def to_korean (sentence):
from deep_translator import GoogleTranslator
translated = GoogleTranslator(source='auto', target='ko').translate(sentence)
return translated
print( to_korean("I am a boy.") )
# 저는 남자입니다.
⑶ A function that automatically translates a given sentence into Japanese
def to_japanese (sentence):
from deep_translator import GoogleTranslator
translated = GoogleTranslator(source='auto', target='ja').translate(sentence)
return translated
print( to_japanese("I am a boy.") )
# 私は男の子です。
⑷ Translation of a whole Markdown document
⑸ A function that turns an arbitrary variable-length natural language sentence into a 384-dimensional vector, considering its meaning (cf. CELLama)
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
import numpy as np
from scipy.sparse import csr_matrix
import pandas as pd
from sklearn.neighbors import NearestNeighbors
import torch
from torch.utils.data import DataLoader, TensorDataset
from xgboost import XGBClassifier
def sentences_to_embedding(sentences):
embedding_function = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
db = embedding_function.embed_documents(sentences)
emb_res = np.asarray(db)
return emb_res
sentences = []
sentences.append("What is the meaning of: obsolete")
sentences.append("What is the meaning of: old-fashioned")
sentences.append("What is the meaning of: demagogue")
emb_res = sentences_to_embedding(sentences)
2. LLM applications
⑴ ollama.ai (free): Llama2/3/4, Phi-3, Mistral, Gemma, etc
⑵ GroqChat (free): Mixtral, Llama3, Gemma
⑶ OpenRouter (charged): Can utilize ChatGPT API, etc.
⑷ English–Korean translation using Llama2 (free)
import ollama
def english_to_korean(sentence):
content = 'Translate "' + sentence + '" to Korean. Output only the translated sentence.'
response = ollama.chat(model='llama2', messages=[
{
'role': 'user',
'content': content,
},
])
return response['message']['content']
sentence = "I am a boy."
english_to_korean(sentence)
⑸ Determine whether a given sentence contains a chemical formula
import ollama
def is_chemical_formula(sentence):
content = 'Please determine if "' + sentence + '" contains a chemical formula or not. If it is correct, answer "sure"; otherwise, "no".'
response = ollama.chat(model='llama2', messages=[
{
'role': 'user',
'content': content,
},
])
return response['message']['content']
sentence = "NH2OH is an amine."
result = is_chemical_formula(sentence)
print(result)
print('sure' in result.lower())
sentence = "I am a boy."
result = is_chemical_formula(sentence)
print(result)
print('sure' in result.lower())
### Output ###
'''
The term "NH2OH" does contain a chemical formula, so the answer is "yes" or "sure".
True
The statement "I am a boy" does not contain any chemical formulas, so the answer is "no".
False
'''
⑹ Determine whether a given noun is a proper noun or a common noun
import ollama
def is_proper_noun(noun):
content = 'Please determine if "' + noun + '" is a proper noun or common noun. If it is a proper noun, answer "proper"; otherwise, "common".'
response = ollama.chat(model='llama2', messages=[
{
'role': 'user',
'content': content,
},
])
return response['message']['content']
sentence = "Pencil"
result = is_proper_noun(sentence)
print(result)
print('proper' in result.lower())
sentence = "Feynman"
result = is_proper_noun(sentence)
print(result)
print('proper' in result.lower())
### Output ###
'''
"Pencil" is a common noun. Therefore, the answer is "common".
False
"Feynman" is a proper noun. Therefore, the answer is "proper".
True
'''
3. LLM agents
⑴ Overview: 2026 is the year of LLM agents
⑵ OpenClaw (clawd.bot): An open-source project made by an independent developer, Peter Steinberger (steipete). Anthropic requested a name change due to trademark issues (cf. Claude Code), so it was rebranded as Moltbot → OpenClaw.
⑶ Claude Code: An LLM-based agentic coding tool made by Anthropic. The specific models are Haiku (fast and inexpensive), Sonnet (balanced), Opus (high performance)
⑷ ChatGPT Pro
⑸ Google Gemini and NotebookLM User Guide
4. AI Scientist
⑴ The Horizon of Cognition and the Breakthrough Called AI
⑵ FunSearch
⑺ AI-Descartes: Symbolic methods to rediscover Kepler’s third law
Input: 2024.02.10 13:34
Edited: 2026.01.29 00:43