Korean, Edit

Chapter 8. Random Variable Transformation

Higher category: 【Statistics】 Statistics Overview


1. overview

2. moment generating function technique

3. distribution function technique

4. transformation technique



1. overview

⑴ random variable transformation: a methodology for obtaining pY(y) when Y = f(X) is present and pX(x) is given 

Class 1. moment generating function technique

Class 2. distribution function technique: 2-step method

Class 3. transformation technique: 1-step method

Example problems for random variable transformation

Example problems for advanced random variable transformation



2. moment generating function technique

⑴ definition


drawing


⑵ moment generating function and probability distribution function are one-to-one correpondence

⑶ example: if X ~ N(μ, σ2), Y = aX + b ~ N(aμ + b, a2σ2)


drawing


drawing



3. distribution function technique 

⑴ definition


drawing


example 1. X ~ u[-1, 1], Y = X2


drawing


example 2. Y = max{X1, ···, Xn}, Xi: i.i.d 


drawing


example 3. Y = min{X1, ···, Xn}, Xi: i.i.d 


drawing



4. transformation technique

⑴ premise 

① it is only possible when the relationship between X and Y is one-to-one correspondence 

② by the premise, there exist two functions of Y = u(X) and X = ω(Y)

⑵ transformation technique of discrete random variable


drawing


⑶ transformation technique of continuous random variable 

① overview


drawing


○ when ω(Y) is a monotone increasing function, 


drawing


○ when ω(Y) is a monotone decreasing function, 


drawing


② generalization 

○ Jacobian: a kind of function determinant. geometrically, it means the area enlargement rate.


drawing


○ for x1 = f1-1(y1, y2) and x2 = f2-1(y1, y2),


drawing


○ if J ≠ 0, the one-to-one correspondence is established

tip. ways to get around a one-to-one correspondence.

○ premise: pX(x) = e-x (x > 0), pY(y) = e-y (y > 0), Z = X + Y

○ question: pZ(z)

○ calculation


drawing



Input : 2019.06.19 11:39

results matching ""

    No results matching ""