Chapter 14-1. Summary for Statistical Test
Higher category: 【Statistics】 Chapter 14. Statistcal Test
1. reference
3. Xi ~ N(μ, σ2), σ2 is unknown
5. Xi ~ N(μ, σ2), μ is unknown
6. Xi ~ N(μx, σx2) (i = 1, ···, n), Yj ~ N(μy, σy2) (j = 1, ···, m), σx2, σy2 is known
7. Xi ~ N(μx, σ2) (i = 1, ···, n), Yj ~ N(μy, σ2) (j = 1, ···, m), σ2 is unknown
1. reference
⑴ when X ~ N(0, 1) : P( x ∈ [zα, ∞) ) = α
⑵ when X ~ χ2(n) : P( x ∈ [χ2(n)α, ∞) ) = α
⑶ when X ~ T(n) : P( x ∈ [t(n)α, ∞) ) = α
2. Xi ~ N(μ, σ2 ), σ2 is known
⑴ H0 : μ = μ0, H1 : μ ≠ μ0 (significance level : α)
⑵ H0 : μ = μ0, H1 : μ > μ0 (significance level : α)
⑶ H0 : μ = μ0, H1 : μ < μ0 (significance level: α)
3. Xi ~ N(μ, σ2), σ2 is unknown
⑴ H0 : μ = μ0, H1 : μ ≠ μ0 (significance level: α)
⑵ H0 : μ = μ0, H1 : μ > μ0 (significance level: α)
⑶ H0 : μ = μ0, H1 : μ < μ0 (significance level: α)
4. Xi ~ N(μ, σ2), μ is known
⑴ H0 : σ2 = σ02, H1 : σ2 ≠ σ02 (significance level: α)
⑵ H0 : σ2 = σ02, H1 : σ2 > σ02 (significance level: α)
⑶ H0 : σ2 = σ02, H1 : σ2 < σ02 (significance level: α)
5. Xi ~ N(μ, σ2), μ is unknown
⑴ H0 : σ2 = σ02, H1 : σ2 ≠ σ02 (significance level: α)
⑵ H0 : σ2 = σ02, H1 : σ2 > σ02 (significance level: α)
⑶ H0 : σ2 = σ02, H1 : σ2 < σ02 (significance level: α)
6. Xi ~ N(μx, σx2) (i = 1, ···, n), Yj ~ N(μy, σy2) (j = 1, ···, m), σx2, σy2 is known
⑴ H0 : μx = μy = μ, H1 : μx ≠ μy (significance level: α)
⑵ H0 : μx = μy = μ, H1 : μx > μy (significance level: α)
⑶ H0 : μx = μy = μ, H1 : μx < μy (significance level: α)
7. Xi ~ N(μx, σ2) (i = 1, ···, n), Yj ~ N(μy, σ2) )(j = 1, ···, m), σ2 is unknown
⑴ H0 : μx = μy = μ, H1 : μx ≠ μy (significance level: α)
⑵ H0 : μx = μy = μ, H1 : μx > μy (significance level: α)
⑶ H0 : μx</sub = μy = μ, H1 : μx < μy (significance level: α)
Input : 2019.07.24 20:59